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Abstract

Questions: How does spatial scale (extent and grain) influence the relative

importance of different environmental factors as determinants of plant commu-

nity composition? Are there general scale thresholds that mark the transition

from primarily edaphic to primarily climatic control of plant communities?

Location: Global.

Methods:We surveyed the empirical literature and identified 89 analyses from

63 published studies that analysed vegetation–environment relationships

involving at least two categories of predictor variables (edaphic, climatic, topo-

graphic, biotic, spatial or disturbance-related). For each analysis, we identified

the primary predictor variable (i.e. the variable that explained themost variation

in community composition) and the relative effect size of the best predictor vari-

able from each category. We defined ‘primacy’ as the proportion of times a vari-

able category was primary when it wasmeasured, and analysed primacy and the

relative effect size of each category as a function of spatial extent and grain. We

also analysed the subset of studies that measured both edaphic and climatic

variables to identify spatial extent and grain thresholds for the primacy of these

factors.

Results: Edaphic variables had the highest primacy in the overall data set and at

fine grain sizes (<200 m2), but there were no strong trends in primacy across

studies of varying spatial extent. We detected trends of increasing relative effect

size of climatic variables with increasing spatial extent, and decreasing relative

effect size of edaphic variables with increasing spatial grain, although these pat-

terns were not statistically significant. Among studies that measured both

edaphic and climatic variables, the importance of climate factors relative to

edaphic factors increased with increasing spatial extent and grain, with scale

thresholds of 1995 km2 for extent and 295 m2 for grain.

Conclusions: Our study illustrates that vegetation–environment relationships

depend on the spatial scale (extent and grain) of observation and provide empir-

ical support for the view that there is a transition from a primarily edaphic influ-

ence to a primarily climatic influence on plant community composition with

increasing spatial scale.

Introduction

A central goal of plant community ecology is to identify

the processes that drive spatial variation in species compo-

sition. Despite evidence that ecological patterns and

processes can depend greatly on the spatial scale of

observation (Greig-Smith 1952; Allen & Starr 1982; Levin

1992; Reed et al. 1993), vegetation studies are generally

conducted at a single scale, so it remains unclear how the

relative influence of different environmental factors on

community composition varies with spatial scale. There is

a long-standing assumption among plant ecologists that
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edaphic variables, such as soil chemistry, texture and

depth, control community composition at fine scales,

whereas climatic variables like temperature and precipita-

tion are most important at broad scales (Warming 1895;

Schimper 1903; Kruckeberg 2004; Palmer 2007). How-

ever, this notion has surprisingly little direct empirical sup-

port, and it is not known at what scale, if any, a transition

from a primarily edaphic influence to a primarily climatic

influence on vegetation–environment relationships occurs.

Vegetation–environment relationships are typically

detected by measuring environmental variables and spe-

cies composition across multiple sampling units and using

multivariate analyses, such as ordination (Kent & Coker

1992) and Mantel tests (Urban et al. 2002) to determine

how much between-sample variance in community com-

position can be explained by between-sample variance in

environmental factors. The ability of a study to detect an

effect of an environmental factor on species composition is

therefore dependent on both the degree to which species

differentially respond to the factor and the extent to which

the between-sample variance in that factor can be resolved

given the spatial scale of the study (Reed et al. 1993).

Because environmental factors differ in the spatial scales at

which they vary (Burrough 1981), the relative strength of

the relationship between different environmental factors

and species composition should depend on the spatial scale

of the study.

Spatial scale comprises two elements, extent and grain

(Turner 2005), both of which may influence the amount

of variance observed in a given environmental factor and

thus its observed relationship with species composition.

Extent is defined as the overall area encompassed by a

study, and grain is defined as the area of the smallest unit

of observation (Palmer &White 1994). Because most envi-

ronmental variables are spatially autocorrelated, their vari-

ance tends to increase with increasing extent (Wiens 1989;

Palmer 2007), but this relationship depends on the inher-

ent spatial structure of the variable. Formany edaphic vari-

ables, such as soil pH or nitrogen concentration, high

variance occurs at fine spatial scales (Palmer 1990; Lech-

owicz & Bell 1991), so increasing extent beyond a certain

point will result in relatively little added variance (Fig. 1a).

Conversely, many climatic variables, such as temperature

and precipitation, vary across much broader scales (Bell

et al. 1993), so variance will increase considerably with

extent up to very broad scales (Fig. 1a). We therefore

expect the influence of coarse-grained variables (e.g. cli-

mate) on species composition to increase relative to that of

fine-grained variables (e.g. edaphic) with increasing spatial

extent.

Changing the grain of the study may also influence the

amount of observed between-sample variance and there-

fore the relative effect sizes of different environmental fac-

tors. As grain increases, more environmental variance is

included within samples and is thus averaged out, decreas-

ing the amount of between-sample variance available to

explain variation in species composition (Wiens 1989).

This decrease should be strongest in fine-grained variables

but negligible in coarse-grained variables (Fig. 1b). Conse-

quently, we expect the influence of coarse-grained vari-

ables (e.g. climate) to increase relative to that of fine-

grained variables (e.g. edaphic) with increasing spatial

grain. For both spatial extent and grain, this suggests there

is a scale threshold where edaphic factors give way to

climatic factors as the primary determinants of species

composition across sample units. Identification of such a

threshold, if general, would be of considerable significance

in the study and management of vegetation (Palmer

2007).

In this study, we conducted a meta-analysis of vegeta-

tion studies to evaluate how spatial scale (extent and grain)

influences the relative importance of different environ-

Fig. 1. Theoretical expectations of the amount of between-sample variance in climatic and edaphic factors as a function of spatial extent and grain. (a) As

extent increases, between-sample variance increases due to spatial autocorrelation of environmental variables. Variance saturates at relatively small extent

for edaphic variables, because most variation is found at fine scales, but variance continues to accumulate at relatively broad scales for climatic variables.

(b) As grain increases, between-sample variance decreases as more variance is included within plots and thus averaged out. The decrease is more rapid for

edaphic variables, which exhibit high fine-scale variation, than for climatic variables, which vary over broader scales.
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mental factors as determinants of plant community com-

position. We classified environmental factors into six cate-

gories (edaphic, climatic, topographic, disturbance-related,

biotic, spatial) and used effect sizes extracted from pub-

lished studies to determine their relative ability to explain

variation in plant community composition across a range

of spatial scales. We also conducted a more detailed analy-

sis of our two categories of greatest interest, edaphic and

climatic variables (based on Schimper’s (1903) ‘rules’;

Kruckeberg 2004), to determine whether there is a general

scale threshold that marks the transition from edaphic to

climatic control of plant community composition. We

address the difficulties associated with comparing the out-

put of different multivariate analysis methods and suggest

guidelines for analysing vegetation–environment relation-

ships and reporting results that would facilitate future

meta-analyses.

Methods

Data compilation

We searched the ISI Web of Knowledge database for

vegetation–environment studies published in the period

1990–2010 to be included in the meta-analysis. We lim-

ited the search to studies using four widely used and

supported multivariate data analysis methods: canonical

correspondence analysis (CCA), detrended correspon-

dence analysis (DCA), Mantel tests and nonmetric mul-

tidimensional scaling (NMDS). We did not include

studies using linear ordination methods, such as PCA

and RDA, as they have been found to be generally

inappropriate for analysis of vegetation data (McCune &

Grace 2002). For each publication year, we performed

the following topic keyword searches: (1) ‘(Vegetation

OR Plant OR Community) AND (NMS OR NMDS OR

MDS)’; (2) ‘(Vegetation OR Plant OR Community) AND

Mantel’; (3) ‘(Vegetation OR Plant OR Community)

AND CCA’; and (4) ‘(Vegetation OR Plant OR Commu-

nity) AND DCA’. Additionally, due to the high fre-

quency of pertinent studies in the Journal of Vegetation

Science and Journal of Biogeography, each issue (1990–

2010) of these journals was explored individually for

topics related to gradient analysis and species composi-

tion. Of the 2213 total studies returned from the

searches, we determined that 419 studies involved

analysis of vegetation–environment relationships. We

included in the meta-analysis all studies that (1)

reported the spatial extent and grain of the study, or

included maps from which these values could be deter-

mined and (2) reported effect size statistics for vegeta-

tion–environment correlations involving at least two

categories of predictor variables (Table 1). Despite the

large number of vegetation studies returned from our

search, many did not report extent, grain or appropriate

effect size statistics. As a result, we included a total of

63 studies (89 separate analyses) in the final meta-

analysis (Appendix S1). For the purpose of comparing

general groups of predictor variables across studies, we

assigned each variable to one of six categories: climatic,

edaphic, topographic, disturbance, biotic and spatial fac-

tors (Table 1). From selected papers, we only used effect

size statistics derived from analyses of ‘simple’ (using

the variable of interest as the only predictor variable)

and not ‘partial’ relationships (using multiple predictor

variables) between environmental variables and com-

munity composition, because partial correlations depend

not only on the relationship between the predictor vari-

able of interest and the response variable, but also on

correlations among predictor variables.

Effect sizes

Different multivariate analysis methods produce different

effect size statistics, but all reflect the amount of among-

sample variation in community composition explained by

a given predictor variable. Studies using Mantel tests

Table 1. Classification scheme for predictor variables in vegetation–

environment studies. For each category, we provide examples of specific

variables measured in studies included in our meta-analysis.

Predictor

variable category

Measured variables

Biotic Canopy cover, canopy type, maximum vegetation

height, tree basal area, tree species, NDVI,

number of stems, moss cover

Climatic Annual mean temperature, coldest month

temperature, annual mean precipitation, growing

season precipitation, summer precipitation,

precipitation seasonality, annual mean rainfall,

CV of annual rainfall, aridity, evaporation,

evapotranspiration, humidity, continentality,

degree-days >5 °C, growing season duration,

insolation, photosynthetically active radiation

Disturbance Time since disturbance, land-use intensity,

land-use history, fire frequency, fire intensity,

erosion, development, distance to village,

glaciation, grazing intensity, hurricane damage

Edaphic Soil texture, bulk density, rock cover, bedrock

type, soil nutrient concentrations (e.g. N, P, K, Ca,

Al, Mg, Mn, Cu, Zn, Fe, S), nutrient ratios, pH,

conductivity, cation exchange capacity, organic

matter content, soil depth, horizon depth, litter

depth, soil moisture, water level, drainage,

fertility

Spatial Geographic distance, latitude, longitude, region

Topographic Elevation, elevation range, aspect, exposure,

depression, aspect, radiation index, slope, slope

position, topography
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reported effect size as Mantel’s r, which reflects the

relationship between dissimilarity matrices for predictor

variables and community composition (McCune & Grace

2002). Studies using ordination techniques (CCA, DCA,

NMDS) sometimes reported coefficients of determination

(r2) for linear or surface models of predictor variables fit to

ordinations of community composition data (Dargie

1984). Other studies using CCA quantified effect sizes as

the proportion of total variance in community composition

data explained by a given predictor variable, calculated as

the ratio of the first eigenvalue of a CCA constrained by

the variable of interest and the sum of all eigenvalues (total

inertia) of an unconstrained CA of the community compo-

sition data (Økland & Eilertsen 1994). Most CCA and DCA

studies only reported correlations between environmental

variables and individual ordination axes. Because we

required a single effect size statistic per variable per study,

we developed a new metric, called the ‘multivariate effect

size statistic’ (MESS), which incorporates correlations with

multiple ordination axes into a single measure of effect

size:

MESS ¼
XN

i¼1

r2i �i

where N is the number of ordination axes included, ri is

the correlation coefficient for the environmental variable

and sample scores on the ith ordination axis, and ki is the
eigenvalue of the ith axis. MESS is effectively an average

of correlation coefficients across multiple ordination axes,

weighted by the amount of variance accounted for by each

axis. The specifics of the formula are mathematically arbi-

trary and were chosen to maximize the correlation

between MESS and more standard effect size metrics cal-

culated from simulated data sets (see below). We calcu-

lated MESS values when possible for studies that did not

report effect sizes but otherwise met our criteria.

Because effect size metrics from different multivariate

methods or different data sets are not directly comparable

(Økland 1999), we used relative rather than absolute effect

sizes in our analyses. We calculated relative effect size as

the ratio of the effect size of a given variable to the maxi-

mum effect size of any variable in the study. Relative effect

size therefore measures how well a predictor variable

explains variation in community composition relative to

other variables measured in the same study. Using relative

rather than absolute effect sizes was necessary for analy-

sing trends across data sets, but it has some disadvantages.

The relative effect size of a given variable is dependent on

the other variables included in a study, potentially compli-

cating detection of trends with respect to spatial scale.

Below we describe how we attempted to deal with these

issues.

Simulations

We analysed whether MESS accurately reflects correla-

tions between community composition and predictor

variables using 1000 simulated data sets of community

composition and environmental predictor values gener-

ated by a simple niche model (see Appendix S1 for

detailed description of simulations). For each simulated

data set, we ran a CCA and DCA and calculated stan-

dard measures of effect size (proportion of total inertia

in CCA explained by an environmental variable and r2

of environmental vector fit for DCA) and corresponding

MESS values for each predictor variable. To determine

the sensitivity of the statistic to the number of CCA or

DCA axes included, MESS was calculated using either

the first two or first four ordination axes. In addition,

for CCA we calculated MESS using both inter-set and

intra-set correlations, because most studies did not

report which were used. Inter-set correlations are corre-

lations between environmental variables and WA scores

(derived from the species matrix); intra-set correlations

are correlations between environmental variables and

LC scores (linear combinations of environmental vari-

ables) (Palmer 1993). We calculated the coefficient of

determination (r2) between standard effect size statistics

and corresponding MESS values across predictor vari-

ables for each simulated data set, repeating the proce-

dure 1000 times to obtain a distribution of coefficients

of determination.

Analysis

We analysed the influence of extent and grain on vegeta-

tion–environment correlations in two ways. First, we

determined how often a particular predictor category (e.g.

climatic, edaphic, etc.) was the best predictor in a study

across four classes of spatial extent (<1, 1–100, 100–10 000

and >10 000 km2) and four classes of grain size (<50, 50–
200, 200–1000 and >1000 m2).We called this measure pri-

macy, which we defined as the percentage of cases where a

given predictor variable category explained the most vari-

ance in species composition relative to the total number of

studies which analysed a variable of that category (follow-

ing Field et al. 2009). Primacy gives a general measure of

the importance of each category to species composition to

allow for comparisons between bin classes, and attempts to

correct for any potential biases in the literature, where par-

ticular variables could be disproportionately chosen more

often for analysis (Field et al. 2009). It was for this reason

that we only included studies that analysed more than one

category type in our final meta-analysis (i.e. a measured

variable better explained species composition patterns rela-

tive to other variables of another category).

Journal of Vegetation Science
4 Doi: 10.1111/j.1654-1103.2012.01401.x© 2012 International Association for Vegetation Science

Scale and vegetation–environment relationships A. Siefert et al.



Second, we performed logistic regressions of relative

effect size (0–100%) against extent and grain to examine

the abilities of the different predictor variable categories to

explain variation in community composition as a continu-

ous function of spatial scale. When a study included more

than one variable within a category, we used only the vari-

able with the highest relative effect size within its category.

To protect against artefacts induced by variation in the

number of predictor variables per category across studies,

we used a null model to determine the expected relation-

ships between relative effect size of each variable category

and extent and grain under random permutations of effect

sizes among variables within studies. We used a randomi-

zation procedure to produce 1000 randomized data sets,

and then performed logistic regression analyses on each to

produce null distributions of slopes for the relationships

between relative effect size and extent and grain. By com-

paring the slopes from the observed data to the null distri-

butions, we were able to determine if the observed

relationships could have been generated by random varia-

tion. Relative effect size could also be biased by which

other predictor variable categories were included in a study

(e.g. edaphic variables could have higher relative effect

sizes in studies that did not measure topographic vari-

ables). To account for this, we created dummy variables

indicating whether each predictor variable category was

included in a study, and included theme as covariates in

logistic regressions. Effects of these dummy variables or

their interactions with spatial extent or grain were never

statistically significant (P > 0.25), so we did not include

them in the analyses presented here.

We were also concerned about potential biases arising

from different multivariate methods. To test whether

multivariate method influenced the results of the meta-

analysis, we grouped studies into three categories – direct

ordination (CCA), indirect ordination (DCA and NMDS) or

Mantel test – and included this as a categorical variable in

logistic regressions. Multivariate method did not influence

mean relative effect size or its variation with respect to spa-

tial extent or grain in any case (P > 0.5), so we did not

include it in the final analysis.

Third, because our spatial scaling hypotheses empha-

sized edaphic and climatic variables, we selected the subset

of studies that considered both edaphic and climatic predic-

tor variables (n = 23) for further analysis. For each study

we subtracted the relative effect of the best climatic vari-

able from that of the best edaphic variable. Values above

zero suggest that edaphic factors are more important than

climatic factors as determinants of community composi-

tion and vice versa. We used linear regression to determine

whether the relative influence of climatic vs edaphic fac-

tors was significantly correlated with study extent or grain.

Furthermore, we extracted the ‘threshold’ extent and

grain at which the relative effect of climatic and edaphic

variables was equal (i.e. y = 0).

Results

Simulations

Analysis of simulated data sets revealed that, regardless of

the ordination method or number of ordination axes used

in its calculation, MESS was highly correlated with effect

size statistics commonly reported in the literature (mean

r2 = 0.78–0.97; Table 2). We concluded that MESS is a

valid measure of the effect of environmental predictor

variables on community composition and included it in

our analysis when other effect size statistics were not

available.

Structure of the vegetation–environment data set

The 89 analyses from 63 studies that met our criteria for

the meta-analysis covered a wide range of geographical

regions, biomes, plant types and spatial scales. Geographi-

cally, we found analyses from six continents, with North

America (35), Asia (20) and Europe (17) best represented.

Analyses covered all major terrestrial biomes, but there

was a bias towards temperate (36) and tropical forests (22),

while other biomes such as savanna (4), temperate grass-

land (5) and tundra (3) were underrepresented. Most anal-

yses included all vascular plants (23) or a subset of vascular

plants, e.g. herbs, trees or specific clades (51), but some

analyses also included nonvascular plants (bryophytes and

lichens; 15).

There was considerable variation among studies in the

methods used to collect and analyse vegetation data. Most

analyses identified plants to the species level (85), but a

few used higher (e.g. subspecies) or lower (genus) taxo-

nomic resolution. To quantify community composition,

most analyses measured percentage cover (32), cover clas-

ses (11) or presence/absence (24), although a variety of

other measures, such as abundance, density, basal area

and importance value, were also used. CCA was the most

common multivariate data analysis method (41 analyses),

followed by Mantel tests (25), DCA (14) and NMDS (9).

Within these techniques, there was also large variation in

Table 2. Results of simulations to test the validity of the multivariate

effect size statistic (MESS). Values are mean coefficients of determination

(r2) for relationships between MESS and standard measures of effect size

derived from CCA and DCA.

Ordination 2 axes 4 axes

CCA (inter-set) 0.81 0.82

CCA (intra-set) 0.89 0.93

DCA 0.78 0.97
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specific procedures, such as data standardization, distance

metrics used to calculate dissimilarity matrices and effect

size calculation.

On average, analyses included 10.8 total predictor vari-

ables belonging to 2.88 categories (median = 3). Edaphic

variables were by far the most common, appearing in 87 of

89 analyses, but variables from our other primary category

of interest, climate, were included in only 26 analyses

(Table 3). Edaphic and climate variables were included

together in only 23 analyses. Analyses including edaphics

often measured a large number of edaphic variables

(mean = 6.6), whereas analyses including climate tended

tomeasure fewer climatic variables (mean = 3.0).

Among studies, extent varied by 10.5 orders of magni-

tude (10�4.5–107 km2), with a median of 158 km2, and

variable categories differed significantly in the extent of

analyses in which they appeared (ANOVA, F = 2.63,

P = 0.02). In particular, edaphic variables tended to be

measured in studies with small extent (median =
132 km2), whereas climatic variables tended to be mea-

sured in studies with large extent (median = 3425 km2).

There was a notable lack of studies (n = 3) that tested cli-

matic variables at small extents (<10 km2). Grain varied by

14 orders of magnitude (10�3.3–108.8 m2) among studies

with a median of 200 m2. There was no significant differ-

ence among variable categories in the grain of analyses in

which they appeared (ANOVA, F = 1.3, P = 0.27).

Primacy

Across the entire data set, primacy differed significantly

among categories of predictor variables (chi-square test,

P = 0.006). Edaphic variables had the highest overall pri-

macy (49%), meaning they weremost likely to explain the

most variation in plant community composition when

tested, while biotic variables had the lowest primacy (12%;

Table 3). There were few clear trends in the primacy of

variable categories across extent classes. Primacy of distur-

bance variables decreased with increasing extent, but the

sample size was fairly small (Table 3). Edaphic variables

had the highest primacy in small-grained studies

(<200 m2), but their primacy tended to decrease with

increasing grain (Table 3). No category was clearly supe-

rior in intermediate- (200–1000 m2) or large-grained

studies (>1000 m2).

Relative effect size

Relationships between relative effect sizes of predictor

variable categories and extent or grain were not

statistically significant at the a = 0.05 level, but we

detected trends that matched our initial hypotheses. The

strongest trends were a decrease in the relative effect size

of edaphic variables with increasing grain (r2 = 0.10,

P = 0.11; Fig. 2b) and an increase in the relative effect

size of climatic variables with increasing extent (r2 =
0.20, P = 0.30; Fig. 2c). Null model analyses showed that

trends this strong could not have been produced by ran-

dom variation of effect sizes within studies alone

(P < 0.001). Relative effect sizes of the other predictor

variable categories were not significantly correlated with

extent or grain (P > 0.3).

Results from the analysis on the subset of studies that

considered both edaphic and climatic variables suggest that

the relative influence of edaphic vs climatic variables

depends on extent and grain. As extent increased, the

effect size of climatic variables increased relative to that of

edaphic variables, although the relationship was only mar-

ginally significant (r2 = 0.20, P = 0.02; Fig. 3a). The

threshold value (i.e. the extent at which climatic variables

superseded the importance of edaphic variables) was

1995 km2 (or roughly a square region of 45 km per side;

Fig. 3a). Climatic variables also became increasingly influ-

ential relative to edaphic variables at larger grains

(r2 = 0.12, P = 0.09; Fig. 3b). The threshold grain was esti-

mated at 295 m2 (Fig. 3b).

Discussion

We conducted a global meta-analysis to test for scale

dependence in vegetation–environment relationships and

Table 3. Primacy of predictor variable categories for extent and grain bin

classes. Primacy values represent the percentage of cases where a given

predictor variable category explained the most variance in species compo-

sition relative to the total number of analyses that analysed a variable of

that category. The total number of cases is shown in parentheses.

Category Extent (km2) Total*

<1 1–100* 100–10 000 >10 000*

Biotic – (0) 0% (8) 0% (5) 50% (4) 12% (17)

Climatic 0% (4) 33% (3) 25% (8) 36% (11) 27% (26)

Disturbance 50% (4) 50% (10) 33% (9) 20% (10) 36% (33)

Edaphic 45% (20) 57% (21) 45% (29) 53% (17) 49% (87)

Spatial 0% (4) 0% (3) 29% (14) 0% (4) 16% (25)

Topographic 50% (18) 27% (15) 53% (19) 8% (13) 37% (65)

Category Grain (m2) Total*

<50* 50–200* 200–1000 >1000

Biotic 0% (5) 0% (2) 67% (3) 0% (7) 12% (17)

Climatic 0% (5) 14% (7) 57% (7) 29% (7) 27% (26)

Disturbance 33% (9) 0% (2) 36% (14) 50% (8) 36% (33)

Edaphic 60% (20) 58% (26) 40% (25) 38% (16) 49% (87)

Spatial 25% (4) 0% (7) 17% (6) 25% (8) 16% (25)

Topographic 29% (14) 48% (21) 25% (16) 43% (14) 37% (65)

*Significant difference in primacy among predictor variable categories (chi-

square test, a = 0.05).
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found trends broadly consistent with our initial hypothe-

ses. The relative importance of different environmental

factors as determinants of plant community composition

was dependent on spatial scale. In particular, the influence

of climatic variables increased relative to that of edaphic

variables with increasing extent and grain (Figs 2 and 3).

These results demonstrate the inherent scale dependence

of ecological patterns (Levin 1992) and provide empirical

support for one of the oldest observations in plant ecology.

Schimper (1903) was among the first plant geographers,

and influenced by the work of Warming (1895), estab-

lished a set of ‘rules’ (Kruckeberg 2004) that included (1)

climate as the primary determinant of plant composition

worldwide (i.e. at broad scales) and (2) soil properties of

secondary importance, predominantly within regions (i.e.

at fine scales). Although it took many decades for plant

ecologists to develop the appropriate statistical tools and

data sets required to refine Schimper’s assertion, we find

it nonetheless surprising that such investigations have

been lacking despite the large growth of quantitative

vegetation–environment studies since the 1980s (von

Wehrden et al. 2009).

Fig. 2. Relative effect size of edaphic (a and b) and climatic variables (b and c) on community composition in relation to spatial extent and grain. Each

point represents the variable with the largest effect size within a category in a given study. P-values, coefficients of determination and lines of best fit are

from logistic regression of relative effect size on log-transformed extent or grain.
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Fig. 3. Comparison of the relative effect of edaphic vs climatic factors on community composition as a function of spatial extent (a) and grain (b). The

analysis only considered the subset of studies that included climatic and edaphic factors simultaneously (n = 23). Each point represents the difference

between the relative effect size of the most explanatory edaphic and climatic variable in a given study. Values greater than zero (dashed grey line) indicate

that edaphic variables are better predictors of community composition than climatic variables, and vice versa. Black lines represent linear models. Solid

grey lines represent scale thresholds at which the transition from a primary edaphic influence to a primary climatic influence occurs.
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The transition from edaphic to climatic factors as the pri-

mary drivers of spatial turnover in composition as scale

increases, and spatial extent in particular, suggests there is

a threshold extent, which we estimated is approximately

2000 km2, where climate and soils are roughly equal driv-

ers of vegetation–environment correlations (Fig. 3). If

accurate, we suggest this area is an emergent scale thresh-

old defining the primary cause of different structures of

spatial variation in atmospheric (coarse-grained) vs

edaphic (fine-grained) factors, and, secondarily, how those

factors interact to limit plant distribution. For example,

2000 km2 – or a linear distance of about 45 km – should

be roughly the distance threshold at which plant species

from different plots are more likely to differ in temperature

tolerances than pH tolerances, based simply on how vari-

ance in those factors is spatially distributed (Fig. 1a). Of

course, the 2000 km2 threshold should not be considered

a hard rule, and the actual scale of transition will likely

vary depending on other factors, particularly topographic

relief, which strongly influences the spatial distribution of

climatic variation (Palmer 2007). If plant ecologists had a

better understanding of such environmental distributions,

for example by applying geostatistical tools to describe

spatial structure in environmental data (Rossi et al. 1992;

Urban et al. 2000), we would be better able to design

surveys with strong statistical power to detect basic plant–

environment associations.

Although the concept of spatial extent and its potential

to influence vegetation–environment relationships is per-

haps more intuitive, we find it interesting that grain was at

least as important in determining the relative influence of

different environmental factors on plant communities

(Figs 2 and 3). It is probably not surprising that edaphic

variation would strongly influence plant community com-

position within, for example, a 1-ha area of forest, and that

increasing the study extent to continental scale would

result in an increase in the relative influence of climate.

We suspect that few plant ecologists appreciate that a simi-

lar shift in the relative importance of edaphic and climatic

factors could result from increasing the size of sampling

plots (i.e. grain), without any change in the extent of the

study. Our analysis identified a threshold grain of approxi-

mately 300 m2 at which climatic factors became better pre-

dictors of community composition than edaphic factors.

We argue that this transition occurs because, at large grain

sizes, most fine-scale edaphic variation is included within

plots, leaving little between-plot variation to explain varia-

tion in community composition. Supporting this interpre-

tation, edaphic variables were more sensitive than climatic

variables to increasing grain (Fig. 2b,d). These results stress

the importance of carefully considering the size of plots

used in vegetation studies in relation to the scale of spatial

variation of the environmental variables being considered,

as this decision can have a strong influence on the

observed vegetation–environment relationships (Fortin

et al. 1989; Reed et al. 1993; Fortin & Dale 2005).

Our findings regarding the spatial dependence of

vegetation–environmental relationships complement the

insights gained through studies of spatial patterns of biodi-

versity, such as species–area relationships. Interestingly,

our estimated spatial extent threshold, 2000 km2, coin-

cides with the scale at which triphasic species–area curves

often shift from phase 2 (shallow) to phase 3 (steep) (Frid-

ley et al. 2005, 2006; Fridley, unpublished data), in line

with Palmer’s (2007) environmental texture hypothesis.

This hypothesis asserts that species diversity in a given

area is driven by the amount and distribution of environ-

mental heterogeneity (i.e. environmental ‘texture’),

which itself varies as a function of spatial scale. Drawing

links to this hypothesis, we suggest that at fine spatial

scales, spatial variation in edaphic variables drives spatial

turnover of plant community composition, generating

strong vegetation–edaphic relationships and an accumula-

tion of new species with increasing area (i.e. steep species–

area curve). At intermediate scales, edaphic variation

plateaus, leading to a relatively weaker influence of soils

on vegetation and a shallow species–area curve. At broad

scales (>2000 km2), climatic variation becomes large

enough to drive spatial variation in community composi-

tion, leading to strong vegetation–climate relationships

and a steep species–area curve. Future studies that com-

bine information on spatial patterns of species diversity,

spatial turnover in community composition and spatial

variation of environmental variables should refine our

understanding of how plant communities are structured

in space.

We were primarily interested in edaphic and climatic

factors, but we also tested for spatial dependence of the

influence of a variety of other environmental variables

(biotic, disturbance-related, spatial and topographic).

These factors often explained a large amount of variation

in community composition (Table 2), but there were no

consistent trends in their relative effect in relation to spatial

extent or grain. The reason for a lack of clear relationships

may be that, unlike edaphic and climatic variables, vari-

ables within these categories do not have a characteristic

scale of spatial variation. For example, while we argue that

variation in edaphic variables is characteristically fine-

grained and variation in climatic variables is coarse-

grained, the ‘disturbance’ category included variables as

diverse as grazing intensity, human land use and glacia-

tion, which represent processes that occur on vastly differ-

ent spatial scales. Analysing patterns of more narrowly

defined categories of environmental variables would prob-

ably have been more informative, but the small sample

size of our analysis did not allow this.
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The largest challenge to detecting general patterns in

this study was the inconsistency among studies in

the methods used to analyse and report vegetation–

environment relationships. A diverse variety of statistical

methods exist for analysing multivariate community data

(von Wehrden et al. 2009), and direct comparisons of

results even among studies using similar methods are

potentially misleading. We will not debate the relative

merits of different ordination and other multivariate analy-

sis methods here, as that topic has received considerable

attention elsewhere (e.g. Kent & Ballard 1988; Palmer

1993), but we do recommend that, regardless of the

method used, studies should report a single effect size sta-

tistic for each environmental variable that quantifies the

amount of variation in community composition explained

by that variable, rather than (or in addition to) reporting

correlations with individual ordination axes. Specifically,

we recommend that studies report the following effect size

statistics: (1) CCA – proportion of total inertia in CCA

explained by environmental variable (ratio of eigenvalue

to total inertia; Økland & Eilertsen 1994); (2) DCA

and NMDS – coefficient of determination (r2) of linear or

surface model of environmental variable fit to the ordina-

tion (Dargie 1984); (3) Mantel test – Mantel’s r. This

will allow simpler interpretation of the relative influence

of different environmental factors measured in a study on

community composition, and facilitate comparisons

among studies that can lead to a more general understand-

ing of vegetation–environment relationships.

In summary, our meta-analysis provided evidence that

the relative influence of different environmental variables

on plant community composition depends on spatial

scale, with the effect of climate increasing relative to that

of edaphic factors with increasing extent and grain. These

results supported our initial hypotheses based on differ-

ences in the spatial distributions of edaphic (fine-grained)

and climatic (coarse-grained) variables, suggesting that an

awareness of the spatial structure of the environment is

critical for measuring and understanding vegetation–

environment relationships. Our analysis was complicated

by the difficulty of summarizing results of vegetation

studies using diverse methods. Given the recent availabil-

ity of large vegetation data sets from large regions across

the world, our hypotheses could be further tested by

conducting a similar analysis using a standard methodol-

ogy on a single data set, varying both spatial extent and

grain.
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We conducted a global meta-analysis of vegetation studies and found that the relative importance of different environ-

mental factors as determinants of plant community composition varied with spatial scale. In particular, the importance of

climate factors relative to edaphic factors increased with increasing spatial extent and grain, with scale thresholds of about

2000 km2 for extent and 300m2 for grain.
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